

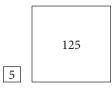
Science and Engineering Entrance Exam (SEE) College-Level Math

College-level Math

The College Level Math test measures students' ability to solve problems that involve college-level mathematics concepts. There are 20 questions on this test and six content areas measured on this test:

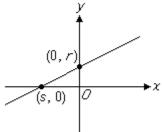
- 1. <u>Algebraic Operation</u>: The Algebraic Operations content area includes simplification of rational algebraic expressions, factoring and expanding polynomials, and manipulating roots and exponents.
 - Addition of algebraic fractions
 - Addition and subtraction of expressions involving absolute value
 - Operations with polynomials
 - Multiplication, division, and simplification of algebraic fractions
 - Operations with exponents
 - Powers, roots, radicals
 - Factoring quadratic expressions
- 2. <u>Solutions of Equations and Inequalities</u>: The Solutions of Equations and Inequalities content area includes the solution of linear and quadratic equations and inequalities, systems of equations, and other algebraic equations.
 - Linear equations and inequalities
 - Quadratic equations
 - Systems of equations and inequalities
 - Exponential equations
 - Equations of degree greater than 2
- 3. <u>Coordinate Geometry:</u> The Coordinate Geometry area presents questions involving plane geometry, the coordinate plane, straight lines, conics, sets of points in the plane, and graphs of algebraic functions.
 - The coordinate plane
 - Straight lines
 - Conics
 - Locus of points
 - Graphs of algebraic functions
- 4. **Applications and other Topics**: The Applications and other Algebra Topics area contain complex numbers, series and sequences, determinants, permutations and combinations, factorials, and word problems
 - Translation
 - Complex numbers
 - Series and Sequences

- Determinants
- Permutations and combinations
- Factorials
- Polygons
- 5. **Functions:** The Functions content area includes questions involving polynomial, algebraic, exponential, and logarithmic functions.
 - Functions of degree greater than 2
 - Exponents and logarithms
 - Graphical properties, exponential and logarithmic functions
 - Domain and range
 - Composition of functions
 - Inverse functions
 - Computations with simple functions
 - Periodicity, amplitude, and other properties
- 6. <u>Trigonometry</u>: The Trigonometry area includes trigonometric functions. Fundamental definitions of trig functions
 - Right triangle trigonometry and circular functions
 - Laws of sines and cosines
 - Graphs of trigonometric functions
 - Trigonometric equations and inequalities
 - Trigonometric identities
 - Trigonometric functions of two angles
 - Inverse trigonometric functions


Sample Questions

For each of the questions below, choose the best answer from the four choices given. You may use the paper you received as scratch paper.

- 1. $2^{5/2} 2^{3/2}$
 - A. $2^{1/2}$
 - B. 2
 - C. $2^{3/2}$
 - D. 2^{5/3}
 - E. 2^2


- 2. If $a \neq b$ and $\frac{1}{x} + \frac{1}{a} = \frac{1}{b}$, then x =
 - A. $\frac{1}{b} \frac{1}{a}$
 - B. b-a
 - C. $\frac{1}{ab}$
 - D. $\frac{a-b}{ab}$
 - E. $\frac{ab}{a-b}$
- 3. If $3x^2 2x + 7 = 0$, then $\left(x \frac{1}{3}\right)^2 =$
 - A. $\frac{20}{9}$
 - B. $\frac{7}{9}$
 - C. $-\frac{7}{9}$
 - D. $-\frac{8}{9}$
 - E. $-\frac{20}{9}$
- 4. The graph of which of the following equations is a straight line parallel to the graph of y = 2x?
 - A. 4x y = 4
 - B. 2x 2y = 2
 - C. 2x y = 4
 - D. 2x + y = 2
 - E. x 2y = 4
- 5. An equation of the line that contains the origin and the point (1, 2) is
 - A. y = 2x
 - B. 2y = x
 - C. y = x 1
 - D. y = 2x + 1
 - E. $\frac{y}{2} = x 1$
- 6. An apartment building contains 12 units consisting of one- and two-bedroom apartments that rent for \$360 and \$450 per month, respectively. When all units are rented, the total monthly rental is \$4,950. What is the number of two-bedroom apartments?
 - A. 3
 - B. 4
 - C. 5
 - D. 6
 - E. 7

7. If the two square regions in the figures below have the respective areas indicated in square yards, how many yards of fencing are needed to enclose the two regions?

- A. $4\sqrt{130}$
- B. $20\sqrt{10}$
- C. $24\sqrt{5}$
- D. 100
- E. $104\sqrt{5}$
- 8. If $\log_{10} x = 3$, then x =
 - A. 3¹⁰
 - B. 1,000
 - C. 30
 - D. $\frac{10}{3}$
 - E. $\frac{3}{10}$
- 9. If f(x) = 2x + 1 and $g(x) = \frac{x-1}{2}$, then f(g(x)) =
 - A. *x*
 - B. $\frac{x-1}{4x+2}$
 - C. $\frac{4x+2}{x-1}$
 - D. $\frac{5x+1}{2}$
 - E. $\frac{(2x+1)(x-1)}{2}$
- 10. If θ is an acute angle and sin $\theta=\frac{1}{2},$ then cos $\theta=$
 - A. -
 - B. 0
 - C. $\frac{1}{2}$
 - D. $\frac{\sqrt{3}}{2}$
 - E. 2
- 11. 5y(2y-3) + (2y-3) =
 - A. (5y + 1)(2y + 3)
 - B. (5y + 1)(2y 3)
 - C. (5y-1)(2y+3)
 - D. (5y-1)(2y-3)
 - E. 10y(2y-3)
- 12. For what real numbers x is $x^2 6x + 9$ negative?
 - A. -3 < x < 3
 - B. x < -3 or x > 3
 - C. x = -3 or x = 3
 - D. 0 < x < 6
 - E. For no real numbers *x*

- 13. A root of $x^2 5x 1 = 0$ is
 - A. $\frac{1-\sqrt{29}}{2}$
 - B. $\frac{5-\sqrt{17}}{2}$
 - C. $\frac{1+\sqrt{29}}{2}$
 - D. $\frac{5 + \sqrt{17}}{2}$
 - E. $\frac{5+\sqrt{29}}{2}$
- 14. In the xy -plane, the graph of $y = x^2$ and the circle with center (0,1) and radius 3 have how many points of intersection?
 - A. None
 - B. One
 - C. Two
 - D. Three
 - E. More than three
- 15.

If an equation of the linear function in the figure above is y = mx + b, then m =

- A. $-\frac{r}{s}$
- B. $\frac{r}{s}$
- C. rs
- D. *r*
- Е. *-s*

- 16. One ordering of the letters *T*, *U*, *V* and *W* from left to right is *UTVW*. What is the total number of orderings of these letters from left to right, including *UTVW*?
 - A. 8
 - B. 12
 - C. 16
 - D. 20
 - E. 24
- 17. If $f(x) = \frac{3x-1}{2}$ and f^{-1} is the inverse of f, what is the value of $f^{-1}(3)$?
 - A. $\frac{1}{3}$
 - B. $\frac{2}{3}$
 - C. 1
 - D. 2
 - E. $\frac{7}{3}$
- 18. The sequence $\{a_n\}$ is defined by $a_0 = 1$ and

$$a_{n+1} = 2a_n + 2$$
 for $n = 0, 1, 2, ...$ What is the value of

- a_3 ?
- A. 8
- B. 10
- C. 16
- D. 20
- E. 22
- 19. From 5 employees at a company, a group of 3 employees will be chosen to work on a project. How many different groups of 3 employees can be chosen?
 - A. 3
 - B. 5
 - C. 6
 - D. 10
 - E. 15
- 20. If $f(x) = \left(\frac{1}{3}\right)^x$ and a < b, which of the following must be true?

A.
$$f(a) + f(b) = 3$$

- B. $f(a) + \frac{1}{3} = f(b)$
- C. f(a) = f(b)
- D. f(a) < f(b)
- E. f(a) > f(b)

Answer Key

Question Number	Answer
1	С
2	E
3	E
4	С
5	A
6	E
7	C
8	В
9	\mathbf{A}
10	D
11	В
12	E
13	E
14	C
15	A
16	${f E}$
17	E
18	E
19	D
20	E